
UCRL-JC-132367 
Preprint 

Visualizing Systems Engineering Data With Java 

R. H. Barter and A. Vinzant 

This paper was prepared for submittal to 
9th Annual International Symposium 

of the International Council on Systems Engineering 
Brighton, England 

June 6,1999 

November lo,1998 

This is a preprint of a paper intended for publication in a journal or proceedini 
Since changes may be made before publication, this preprint is made available 
with the understanding that it will not be cited or reproduced without the P 
permission of the author. 



DISCLAIMER 

This document was pre ared as an account of work sponsored by an agency of the United States 
Government. Neither t!i e United States Government nor the University of California nor any of their 
employees, makes any warranty, express or implied, or assumes any legal liability or responsibiity for the 
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or 
represents that its use would not infringe privately owned rights. Reference herein to any specific 
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, 
Government or the University of California. 

or favoring by the Umted States 
The views and opinions of authors expressed herein do not 

necessarily state or reflect those of the United States Government or the University of California, and shall not 
be used for advertising or product endorsement purposes. 



Visualizing Systems Engineering 

Data With Java 

Robert H. Barter 
Lawrence Livermore National Laboratory 

7000 East Ave., Livermore, CA 94550, USA 

Aleta Vinzant 
Lawrence Livermore National Laboratory 

7000 East Ave., Livermore, CA 94550, USA 

Abstract. Systems Engineers are required to deal 
with complex sets of data. To be useful, the data 
must be managed effectively, and presented in 
meaningful terms to a wide variety of information 
consumers. Two software patterns are presented as 
the basis for exploring the visualization of systems 
engineering data. The Model, View, Controller 
pattern defines an information management system 
architecture. The Entity, Relation, Attribute pattern 
defines the information model. MVC “Views” then 
form the basis for the user interface between the 
information consumer and the MVC 
“Controller”/“Model” combination. 
A Java tool set is described for exploring alternative 
views into the underlying complex data structures 
encountered in systems engineering. 

BACKGROUND 

Problem Statement. Systems engineering, by its 
very nature, deals with enormous amounts of data. 
Raw, and often feral, requirements documents are 
typically reduced to elementary requirement 
statements. Requirement statements are linked, 
categorized, and allocated. Decision criteria is 
established from, and linked to, requirements. 
Design options are identified and design decisions 
are captured. Test plans, cases and procedures are 
developed and linked to the design and requirements. 
Systems Engineering Information Management 
(SEIM) is a common and complex problem that has 
provided the impetus for a lively systems 
engineering tool industry. 
Scope. This paper addresses one aspect of SEIM, 
how to best present complex data sets to information 
consumers. This is not a commercial launch of “Yet 
Another Systems Engineering Tool”. It is a call for 
interested parties to participate in exploring new 
strategies for presenting complex data. 
Purpose. The purpose of this paper is to describe the 
Java tool set that we developed and to encourage 
others to explore novel ways of presenting complex 
data sets. 

SYSTEM ARCHITECTURE 

Visualization of complex data requires a software 
tool. The high level architecture of the tool has a 
profound impact on its final capabilities. There are 
many ways to partition software, one architecture 
developed at Xerox PARC in the late 1970s is 
described by the Model, View, Controller (MVC) 
pattern [Wolfj. The pattern separates the 
functionality of maintaining data, controlling 
operations on the data, and presenting data to the end 
user. The pattern has found wide use in applications 
that require human interaction with large amounts of 
data. 
The MVC pattern was chosen for the visualization 
tool set because it allowed us to focus on the “View” 
portion of the problem. Data model and controller 
software was developed only to the degree necessary 
to support the exploration of the views. The MVC 
pattern has the advantage that multiple views can 
play off of the same data. The system “behavior” can 
be changed by modifying the controller software. 
Model. The model that we chose to implement is the 
Element, Relation, Attribute (ERA) model that is 
common to many systems engineering tools. A 
minimum ERA model as shown in Figure la consists 
of elements that are linked to each other via 
relations. The elements contain attributes. Relations 
can be either unidirectional or bi-directional. 
It has been suggested [include refl that relations 
should include attributes as shown in Figure lb. We 
have adopted the suggestion for our model and have 
additionally allowed for fan-in and fan-out relations 
as shown in Figure lc. 
The use of directional fan-in/fan-out supports simple 
unidirectional relations as its simplest case, and 
supports bi-directional relationships by linking both 
elements to both sides of the relation. Fan-in/fan-out 
also supports “commodity” relations in which it is 
not important to distinguish between the elements - 
that contribute to the input side of the relation or 



between the receiving elements on the output side of 
the relation. 

] 

(a) Simple 

(b) Relation Attributes 

4--.---.-i 
(c) Fan-in Fan-out 

Figure 1. 
Element Relation Attributes 

It is important to keep in mind that the model in an 
MVC implementation can be extremely general. 
Specialized behavior is, generally, implemented in 
the Controller portion of the MVC. As an example, 
elements in our model do not require unique 
identifiers beyond the object identifiers managed by 
Java. The Controller generates and imposes unique 
identifies for the benefit of the user. 
Attributes are associated with elements and relations. 
Within a single element or relation, all of the 
attributes must have unique names. The model 
imposes no other restriction on the use of attributes. 
At the model level, it is perfectly acceptable for one 
element to have an attribute called Function and 
another element to have an attribute called 
Functionality (not a desirable situation). Again, 
rational, predictable behavior is the responsibility of 
the controller. 
We have chosen to implement the model as a set of 
local, memory resident objects. A more sophisticated 
application could choose to store its data in a 
database or any commercial product that exposes an 
Application Programming Interface or API to the 
model. 
View. A detailed discussion of the views 
implemented in the system is left for later in this 
paper. It is important to note, here, that multiple 
views can look at the same data. In general, views 
receive references to the model data by way of the 
controller. Once a reference is obtained. the view 

reads the data directly from the model. Modification 
to the model data is done through the controller. 
Controller. The controller establishes order out of 
chaos and imparts a specific behavior to the 
application. For our purposes, the controller is fairly 
loose in what it allows into the model. An 
organization wishing to use such an MVC 
application might tailor the controller to reflect its 
engineering policy, procedures and processes. 
As an example, a configuration management policy 
might dictate that all elements and relations be 
tracked for changes. Procedures might dictate that 
every time an element is changed, the element will 
be tagged with a time stamp, the nature of the 
change, and the person that made the change. The 
controller would then be required to implement a 
process of obtaining the user’s identification (with 
the help of a View), and assigning the user’s ID, time 
of change and nature of change to attributes in the 
Model. 
The controller is also responsible for importing data 
into the application and exporting data from the 
application. Printing can be implemented in either 
the controller or the views. The choice will depend 
upon how closely the printed data is required to 
match a specific view of that data. 

DESIGN OPTIONS 

Criteria. Jumping on the bandwagon. In order to 
investigate the visualization techniques we had in 
mind, we wanted a development language that 
supported a wide range of platforms, had a large user 
community, and included a visual tool set. 
Block structured and object oriented programming 
are two alternative paradigms for software 
development. Some languages are inherently object 
oriented. Great holy wars have been fought over 
subtle distinctions between one language and 
another. 
We considered C, C++, Visual Basic, Smalltalk, 
Java, and Python. C and C++ have the largest user 
community. C++ is object oriented while C is not. 
Visual Basic is proprietary and object oriented. 
Smalltalk and Java are inherently object oriented. 
Python is an interesting object oriented, interpreted 
language with a strong following. 

DESIGN RATIONALE 

Object orientation was chosen over a block 
structured paradigm because of the potential for a 
group of views to inherit characteristics from a basic 
or parent view. Additionally, elements and relations 
of the ERA model are best implemented as objects. 
Java was chosen because it is a simple, object 
oriented language that has the greatest potential for 
working across different platforms. 

EXPLORING COMPLEX DATASETS 



Infrastructure. The MVC pattern places data in the 
Model, behavior in the Controller, and the user 
interface in the Views. 

Model ) 

+ 
ImPott. Controller 1 

I 
L---7----] Export 

+ 
Views J 

I 

User 
Figure 2. 

Model, View, Controller, Pattern 

ERA data can be categorized and viewed in many 
different ways. The manner in which data is viewed 
can be forced upon the data (and hence the user) or it 
can be a natural view of some intrinsic characteristic 
of the data. 
As an example, a hierarchical requirements 
document in which the customer grouped 
subordinate requirements under superior 
requirements should be viewed as hierarchical data 
as in Figure 3a. To suppress the hierarchy to a linear 
list of requirements as in Figure 3b is to throw away 
some of the information contained in the original 
document. In a similar fashion, Figure 3c shows the 
same requirements as a graph that, while interesting, 
probably does not add to the user’s comprehension 
of the information in the document. 

Req 1 Req 1 
Req 1.1 Req 1.1 
Req 1.2 Req 1.2 

Req 2 Req 2 
Req 2.1 Req 2.1 

Req 3 Req 3 
Req 3.1 Req 3.1 

(a) Original (b) Flattened List 

Figure 3. 
Three Views of the Same Information 

It is useful to categorize data as either linear, 
hierarchical, intra-relational, and inter-relational. 
The categories are important because each category 
implies a different class of views. 
Linear List. List elements are strongly related by 
some characteristic of interest. The strongly related 
elements do not have a superior/subordinate (or 
parent/child) relation with respect to the 
characteristic of interest (i.e. element type). 
Hierarchical. Hierarchical elements are strongly 
related by some characteristic of interest. The 
strongly related elements have a parent/child 
relation. Functional and physical hierarchies are both 
examples of this category. 
Intra-relational. As with hierarchical elements, 
intra-relational elements are strongly related by 
some characteristic of interest. Intra-relational 
elements, however, lack the parent/child relationship 
that characterizes hierarchical relationships. 
Functional flow block diagrams fall into this 
category. 
Inter-relational. Inter-relational elements have a 
strong relationship between elements of differing 
characteristics. Functions that map onto components 
are inter-related. 

VISUALIZING FRAT 

As an example of data relationship categories, 
consider the methodology and data structures in 
“The Engineering of Complex Systems” [Mar and 
Morais]. In brief, the methodology categorizes 
system engineering information as _Functions, 
Requirements, Answers, and Tests @RAT). We have 
recently used the methodology to engineer an 
Integrated Safety Management System [Barter and 
Morais] in which we built up the following 
relationships. 
The functionality (Functions) and design (Answers) 
information was captured hierarchically as seen in 
Figure 4a. At any one level of the functional 
hierarchy, the intra-relationships between the 
_Functions were captured as functional flows as seen 
in Figure 4b. Figure 4c shows how inter- 
relationships were used to map between the 
Functions and their corresponding performance 
Bequirements, between _Functions and &tswers, and 
between _Functions, performance Eequirements, 
design Answers and Tests. 

I Req 3 
\ 

’ Req 2.1 

\ Req 3. I 

- _ (c)Graph 



0 ‘FO 0 A0 

(a) Hierarchy 

a 

(b) Intra-relational 

(c) Inter-relational 

Figure 4. 
FRAT Relationships 

JAVA IMPLEMENTATION 

The first view that we implemented in Java was a 
utility tool to define/explore elements and their 
relationships. 

,‘, s .’ 

StartWith ‘r;a 

f Bekning Elements c Relations. r Ending Elements i 

Element -* --% kelation 4 -) Element 

IElement 2 

I Element 3 
IRelatIon 6 iElement 2 

I Element 3 

Figure 5. 
Element/Relation/Element Editor 

Figure 5, above, shows all of the elements and 
relations in the system without regard to which 
relations match to which elements. From this 
window it is possible to add or delete elements and 
relations. 

.’ IElement 2 
:: Element 3 
‘j I I 

Figure 6. 
Element to Relation to Element Mapping 

Figure 6, above, shows that Element 0 has two 
Relations (4 and 5), and that Element 0 is related to 
Elements 1 and 3 by way of Relation 4. 

Figure 7. 
Relation 6 

Figure 7, above, shows that Element 0 is also related 
Element 2 by way of Relation 6. 

Figure 8. 
Attributes for Element 0 

By opening an element, it is possible to edit the 
attributes for that element. Figure 8, above, shows 
that Element 0 has three attributes named Attl, 
through Att3. The window uses a folder tab 
metaphor for selecting attributes of interest. 
Once we had the ability to define and manipulate 
elements at a primitive level, we needed a way to 
reduce the number of potential elements down to a 
manageable set. Figure 9, below, shows one possible 
user interface for querying the engineering data. In 
this view, the user is presented with a wiring 
diagram metaphor. Starting on the left side of the 
window, the user has selected two Element Lists 
that, by convention, contain all of the elements in the 
system. The Select icons indicate that a selection 
criteria is being used to select a subset of all of the 
elements. 
An example of a selection might be to select all of 
those elements on the input side that have attributes 
“Element Type” that equal “Requirement” and 
present that subset of elements on the output side of- 
the Select icon. 
The output of the top Select icon is fed into a 
Traverse icon to follow some relationship to a target 



set of elements. The resulting list of elements are 
then available at the output of the Traverse. 
The Add icon takes the two lists at its input and 
combines them into an output list that is presented to 
the final Element List. Note that Element Lists could 
have been placed at intermediate points in the 
diagram as debugging aids or to simply show 
intermediate results of the query. 

Figure 9. 
Query Builder 

Figure 10, below, shows an Element List Window 
that is obtained by double-clicking on one of the 
Element List icons in Figure 9, above. The Element 
List is rendered as a hierarchy on the left (in this 
case as a linear list since there is no hierarchy) and a 
spreadsheet on the right to show the attributes of 
each element. Note that in this example the elements 
in the system are the query elements from Figure 9, 
above. In general, the elements would be system 
engineering elements such as Requirements, 
Functions, Components, Sub-assemblies and the like. 
Hierarchical relationships would be shown as 
appropriate. 
The column titles in Figure 10 are active buttons 
that, when clicked, produce a popup list of all of the 
possible attribute names. Selecting a new attribute 
name will cause that attribute to be displayed. 

FII~ i: ^_., ,, 

i Attri&tes ElementType Hiight Wtctth Select Attribute 

li lmm0 

ElementList 30 50 

50 30 

50 30 

COMPOSIT VIEWS 

The real strength of Java comes from its ability to 
build complex views in a relatively short amount of 
time (one to two days per view is reasonable for an 
experienced Java programmer). 
Using the Query Builder as a starting point, a multi- 
list view can be constructed for the FRAT data 
mentioned earlier. Figure 11, below shows one 
possible view with FRA & T hierarchy at the top and 
panels below to show the F to R, F to A, and F, R A 
to T relationships. 

: ., : 

; 
- ..--._ -.- -..-... ---.---_____ ---------‘W 

--.--.--_~-~ --- _---.____-_ 

Figure 11. 
FRAT View 

Of a more general nature, there are two types of N’ 
Diagrams that make interesting views. One type of 
N’ Diagram captures the intra-relationships for a 
chosen set of element types. Figure 12, below, shows 
such a diagram. With Java’s object oriented 
programming model and the ability to trigger events 
when the mouse pointer enters and leaves a cell, it is 
relatively easy to construct a “lively” view in which 
fields of additional information come and go as the 
mouse pointer sweeps over the window. 

Figure 12. Figure 12. 

N2 Diagram For Selected Elements 



Another type of N* Diagram documents the 
relationships between element types. Figure 13, 
below shows such a diagram. Note that the element 
types are shown in the diagonal elements while the 
relationship names are shown in the off diagonal 
elements. 

Figure 13. 

N* Diagram For Element Relationships 

Anyone up for a three-dimensional, virtual reality 
fly-through of an N3 Diagram? 

AVAILABILITY AND FUTURE DIRECTIONS 

The software presented here is not intended for 
commercial use. It is, however, available for 
collaborative development. We are interested in a 
collaborative effort to develop a library of user 
interfaces for the benefit of the systems engineering 
community. Please contact the authors at the address 
below if you are interested in participating in the 
effort. 

CONCLUSION 

Java is an exciting language for exploring graphical 
user interfaces into complex systems engineering 
data. The object oriented nature of the software 
makes it an ideal vehicle for developing a library of 
user interfaces. 
The use of a Model/View/Controller pattern and the 
Element/Relationship/Attribute data model make the 
software adaptable to differing engineering 
environments. While not a commercial product, the 
software can be useful for educational and research 
purposes by those willing to invest the time to 
become familiar with the software’s underlying 
structure. 

NINETH ANNUAL INTERNATIONAL 
SYMPOSIUM OF THE INTERNATIONAL 
COUNCILE ON SYSTEMS ENGINEERING, 
1999 

Mar, 6. W. and Morais, 6. G., “The 
Engineering of Complex Systems”, 
SYNERGISTIC APPLICTIONS, Inc., 1997 

Purves, B. “Information Models as a 
Prerequisite to Software Tool Interoperability”, 
INCOSE Insight, Vol.1 Issue 3, INCOSE, 1998 

Wolf, K. and Liu, C. “New Clients with O/d 
Servers: A Pattern Language for Client/Server 
FrameworkS’, “Pattern Languages of Program 
Design”, ADDISON-WESLEY PUBLISHING 
COMPANY, Inc., 1995 

References: 
Barter, R. H. and Morais, B. G., “Systems 

Engineering Applied to Integrated safety 
Management for High Consequence Facilities’, 
Submitted for PROCEEDINGS OF THE 


